

Cost-of-living crisis v Climate crisis

Dan Lintell - Sustainability Manager

Industrial Designer (BSc)

25+ years design development experience

6 years at Triton (initially NPD)

Long-standing passion for Sustainability

EMBODIED (typically 5-10%)

The GHG emissions associated with the manufacturing, transportation, installation, maintenance, and disposal of a product

OPERATIONAL (typically 90-95%)

The GHG emissions associated with the 'usephase' of a product (for the full anticipated life-span of the product)

The role of domestic hot water

Current focus is on space heating as the #1 source of household emissions (but water heating is #2...)

Heating water is **very** energy intensive

Substance	Specific heat capacity in JKg ⁻¹ K ⁻¹
Lead	130
Mercury	139
Brass	380
Zinc	391
Copper	399
Iron	483
Glass (flint)	504
Aluminium	882
Kerosene	2100
Ice	2100
Sea Water	3900
Water	4180

HOW MUCH water we heat, matters

WHERE that energy comes from, matters

Detailed mathematical modelling of different showering 'Eco-systems' (schematic)

DUTY CYCLE VARIABLES

- # Showers per person, per week
- Shower duration (average)
- Showering temperature (average)
- Temperature of cold water supply
- Flow rate

UTILITIES VARIABLES

^{*} Pro-rata standing charges as an estimated % of utility usage attributable to showering versus total household usage ** This is assumed to be = water supply

Functional unit: 1 year's showering

ELECTRIC SHOWER SOLAR HOT WATER MIXER SHOWER COMBI BOILER (GAS) STORED HOT WATER **DIGITAL SHOWER** AIR-SOURCE HEAT PUMP

Gas: 6.29p / kWh

Elec: 26.35p / kWh

3-person household, 5 showers pppw, 7.5 min average duration @ 41°C

Water

(litres)

21,226

Cost

£ 428.14

(A-Rated Combi)

 Cost
 Water (litres)
 Carbon (kg CO2e)

 £ 376.61
 54,498
 610

(ASHP, COP 3.0)

Cost	Water	Carbon	
COSC	(litres)	(kg CO₂e)	
£ 410.25	54,498	204	

Functional unit: 1 year's showering

Carbon

(kg CO₂e)

232

Waste Water Heat Recovery (WWHR)

'VERTICAL' (60-70+% eff.)

'HORIZONTAL' (40-60% eff.)

Under-bath / tray

Waste Water Heat Recovery (WWHR)

Passive, real-time heat recovery technology

WWHRS is a simple heat recovery technology that captures the otherwise wasted energy (heat) from the shower wastewater to preheat the incoming cold water to the shower (and/or water heater).

Saves £ and CO2e

Reducing hot water demand lowers CO₂ emissions and reduces household energy bills every time the shower is used.

Typically maintenance free

WWHRS typically have no moving parts and no power – so are promoted as 'fit and forget', working silently in the background without the need for turning on or off, or any maintenance.

SAP benefits

Recognised by BRE in SAP since 2008 (with Mixer valves*). Typically results in 6-10% improvement on DER in SAP

*Appendix Q application process underway for use with Electric showers

Gas: 6.29p / kWh Elec: 26.35p / kWh

3-person household, 5 showers pppw, 7.5 min average duration @ 41°C

Cost		Water (litres)	Carbon (kg CO₂e)	
£	334.07	27,062	136	
-£	94.08	5,836	-96	
-f 1	1.110.83	(10 yr. 3%)		

(A-Rated Combi)

Cost		Water (litres)	Carbon (kg CO₂e)	
£	281.30	54,498	287	
-£	95.31	-	-323	

-£ 1,125.39 (10 yr, 3%)

		(0)	9l/min	(ASHP, C	OP 3.0)
		Cost	Water (litres)	Carbon (kg CO₂e)	
	£	302.47	54.498	92	

(10 yr, 3%)

-113

107.78

-£ 1,272.60

Functional unit: 1 year's showering

 Don't overlook showering in your Net Zero plans

- Don't overlook showering in your Net Zero plans
- Consider showering options as part of 'whole-house' heating eco-system design

- Don't overlook showering in your Net Zero plans
- Consider showering options as part of 'whole-house' heating eco-system design
- Where-ever possible, adopt a 'Fabric first' approach

- Don't overlook showering in your Net Zero plans
- Consider showering options as part of 'whole-house' heating eco-system design
- Where-ever possible, adopt a 'Fabric first' approach
- Engage residents, but don't just rely on behavior change

- Don't overlook showering in your Net Zero plans
- Consider showering options as part of 'whole-house' heating eco-system design
- Where-ever possible, adopt a 'Fabric first' approach
- Engage residents, but don't just rely on behavior change
- For a Net Zero future, energy source
 REALLY matters

Over to you...

How can you apply what you have learned today to your professional role...?

Thank you

"The most reliable way to predict the future is to create it"

Abraham Lincoln

